深度学习主机入门版配置

为了让初学者花最少的钱办性价比最高的事情,我构造了这样一套DIY装机配置,在最大化利用显卡资源的同时,极力压缩无关配置。这个配置的主要特性是去掉了扩展性的可能,从而大幅降低了成本。

由于训练和推理主要使用显卡,显卡还是要尽量的好,为了能够训练主流的模型,我们还是要上性价比最高的NVIDIA 1080Ti。

显卡:技嘉(GIGABYTE) AORUS GTX 1080Ti,如果有渠道也可以买海外的英伟达出的公版(699美元)。

CPU:根据预算可以选择i5 7600K或i7 7700K,当然其他的LGA 1151接口的CPU都可以根据自己的经济能力进行选择,注意一下PCIe的通道数,只要要保证16通道,可以上英特尔官网查一下https://ark.intel.com/products。接口一定要是LGA 1151,后面的主板和他是配套的。

内存:至少16G,如果选择16G,建议两个8G,利用上双通道。如果32G,上两条16G。内存频率不是特别重要,DDR4 2133或2400普通的台式机内存就可以了。

主板:华硕Z270-A,跟X99系列主板的3000元起步,Z270要便宜好多,如果选择扩展性好的,比如网上经典的深度学习主机配置里那个三显卡支持的X99-E WS主板,X99系列主板的确有较好的扩展性,他需要搭配的CPU也要高端一些,起步CPU是6800K,比7700K要贵几百元,但6800K的优势是多核,主频却弱于7700K。对游戏、VR的支持,显然7700K更给力一些。Z270A+7700K京东有套装,便宜好几百块。

SSD:考虑到充分发挥显卡的性能,我们尽量不再占用PCIe通道,所以放弃了速度更快的m.2接口SSD,而选用了SATA3的SSD,但6Gbps的速度其实日常使用已经足够快了,而且SATA3的SSD可以持续达到6Gps的读写性能,而m.2(使用PCIe模式)或PCIe的SSD,在连续写入达到4Gb之后,写入速度就迅速衰减到1.6Gbps。推荐型号:三星(SAMSUNG) 850 EVO 250G SATA3 固态硬盘,容量根据需求自己选。

硬盘:建议还是要有一个上T的机械盘用来存数据的,这个就随便了,只要是SATA3接口的随便选。

电源:如果将来不再加显卡了,理论上这个配置也不适合加显卡,毕竟通道数只有16个,一个显卡占用的PCIe×16就给用没了,虽然这个主板支持两个PCIe×16插槽,但是真是两个都插上,主板芯片组就会变成两个8通道的运转了。所以600W的电源基本就够用了,建议电源要稳定,最好上EVGA品牌,大厂实力,然后根据经济能力自己选就好了。

虽然是深度学习的乞丐版,这个配置在游戏玩家中也算非常不错的高端配置了,玩各类游戏那是不在话下,再来个VR套装,就真是物尽其用了。

装机过程要注意的是显卡供电要求比较高,需要用两个电源线把两个供电口都插满。

如果有人使用这个配置装机了,你可以在此留言,我将再写一篇ubuntu、windows10双系统安装,以及深度学习基础环境搭建的文章。

Faster R-CNN论文翻译

Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然。什么想法?就是把那个一直明明应该换掉却一直被几位大神挤牙膏般地拖着不换的选择性搜索算法,即区域推荐算法。在Fast R-CNN的基础上将区域推荐换成了神经网络,而且这个神经网络和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间。同时mAP又上了一个台阶,我早就说过了,他们一定是在挤牙膏。

Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

摘要

最新的检测网络都依赖区域推荐算法来推测物体位置。像SPPnet[1]和Fast R-CNN[2]已经大幅削减了检测网络的时间开销,但区域推荐的计算却变成了瓶颈。本作将引入一个区域推荐网络(RPN)和检测网络共享全图像卷积特征,使得区域推荐的开销几近为0。一个RPN是一个全卷积网络技能预测物体的边框,同时也能对该位置进行物体打分。RPN通过端到端的训练可以产生高质量的推荐区域,然后再用Fast R-CNN进行检测。通过共享卷积特征,我们进一步整合RPN和Fast R-CNN到一个网络,用近期流行的“术语”说,就是一种“注意力”机制。RPN组件会告诉整合网络去看哪个部分。对于非常深的VGG-16模型[3]。我们的检测系统在GPU上达到了5fps的检测帧率(包括所有步骤),同时也在PASCAL VOC2007,2012和MS COCO数据集上达到了最好的物体检测精度,而对每张图片只推荐了300个区域。在ILSVRC和COCO 2015竞赛中,Faster R-CNN和RPN是多个赛道都赢得冠军的基础。代码已经公开。

Read more